返回 走进不科学 首页

上一页 目录 下一页

『章节错误,点此举报』

第四百五十一章 杨老:无所谓,我会出手[1/2页]

天才一秒记住本站地址:[文心阁]https://m.wenxingexiaoshuo.net/最快更新!无广告!

    .“

    虽然此时心中感慨万千,情感复杂无比。

    但作为一名性格极其理性的科研汪,徐云的脑海中多少还存留着一部分清明。

    因此他很清楚。

    现在不是致谢或者表达情感的场合,全球的物理爱好者此时都关注着这里的情况。

    即便是再复杂的情感,也只能等到台下去说。

    现如今他的当务之急不是儿女情长,而是要尽可能的展现自己的能力,不能让周绍平的好意白费。

    想到这里。

    徐云不由深吸一口气,朝周绍平投去了一道感激的眼神。

    旋即整个人的表情再次恢复了原先的平静。

    他仿佛什么事都没有发生过一样,看起来就像是个请教问题的学生,对周绍平问道:

    “周院士,您觉得我的方案可行吗?”

    周绍平思索片刻,点了点头:

    “可行。”

    周绍平的这句话并不是客套,徐云的这个思路是真的令他有些意外兼惊喜。

    实际上。

    在刚点名徐云做助理的时候,周绍平确实有些许给徐云架舞台的想法,但这个念头一开始并不强烈。

    毕竟架舞台的前提是徐云有真才实学,或者说在某个问题上表现出了真才实学的素养。

    否则不就和没演技却要强吹演技,甚至搞虚假上座率刷票一样了吗?

    若真是如此。

    徐云和周绍平乃至整个华夏科学界都会沦为笑柄。

    周绍平愿意做春泥不假,但不代表他会做某些蠢事。

    因此在一开始的时候,他只是想先行观望一下,看看有没有什么机会给徐云搭个舞台。

    后来包括赝标量的那部分卡壳,也都是他遇到的真实情况,而不是装出来的把戏。

    结果没想到.

    徐云的思维竟然如此敏捷,前后没几分钟就给出了一个非常精妙的计算方向。

    加之有此前在锦屏深地实验室那次的配合经历打底,周绍平才临时做出了这么个决定。

    也就是有徐云表现出了货真价实的能力这个‘因’,才有的周绍平所选择的‘果’。

    因此对于徐云的思路,周绍平确实双手赞同。

    在周绍平做出决定后。

    徐云便不再迟疑,开始计算起了绕y轴旋转算符的矩阵元。

    这其实不是一件容易活儿。

    旋转矩阵和费米面一样,也是一个涵盖多领域的玩意儿。

    比如shader也就是编程领域中就也有旋转矩阵,不过shader的旋转矩阵很容易。

    只要通过正余弦关系做正余弦展开,然后做成矩阵相乘的格式,再用三个向量点乘充当正交基底就行了。

    但到了粒子物理领域嘛

    这事儿就比较复杂了。

    因为它涉及到了实标量场的正则量子化范畴。

    众所周知。

    对于一个经典的由n个质点所构成的力学系统,它的广义坐标可定义为

    其中N=3n为广义坐标空间的维数。

    这时候呢。

    系统的拉氏函数定义为:

    L=L(qi,q?i),这道公式标注为1。

    而对于场Ψ,则它的拉氏密度函数L可定义为:

    L=L(Ψ,μΨ)标注为2。

    且拉氏密度函L是一个标量,其中场Ψ可以是一个标量、旋量、矢量或张量。

    因此在弯曲时空中,一般物质场(引力场除外)的拉氏密度应该可以写成:

    L=L(Ψ,μΨ)标注为3。

    对于微观系统,一般还不需要考虑引力,所以估且只关心2式。

    由2式得场的拉氏函数为:

    L=∫L(Ψ,μΨ)d3x

    =∫L(Ψ,Ψ,1ctΨ)d3x

    =∫L(Ψ,1cΨ?)d3x把它标注为4。

    没错。

    看到这里。

    想必很多同学已经看明白了。

    这个公式的意思很清晰:

    可以理解成把空间分割成一个个的容积为dv的小方盒,其中编号为i小方盒中场的平均值为Ψi,并令qi=Ψidv,

    则(4)式可以写成形如(1)式的形式:

    L=L(qi,q?i)。

    如此一来。

    场量Ψ的物理意义才相当于(1)式中的广义坐标,也就是构筑出了一个系统,才能正式进行后续演算。

    依旧非常简单,也非常好理解。

    唰唰唰——

    这次徐云的推导过程没有依靠计算机,而是用手写进行着运算。

    毕竟很多时候比起键盘,手写更容易进入状态。

    更何况狄利克雷虽然在数学史上的排名只有20名出头,但他的计算能力却可以进入前十:

    在当初的冥王星之夜中,狄利克雷负责的就是银经偏差值计算。(为啥昨天还有人说徐云没见过狄利克雷呢脑袋伸过来我给你个buff)

    因此此时此刻。

    徐云可谓是真正的下笔如有“神”。

    “qi相对应的正则动量是pi=Lq?i于是可定义正则动量密度为π(r,t)=L(tΨ)“

    “所以系统的哈密顿量为H=∫(π(r,t)tΨL)d3x”

    “将‘冥王星’微粒看做类似于质点的情形,对于场,其算符则有以下基本对易关系,[π(r,t),φ(r′,t)]=iδ3(rr′)以及[π(r,t),π(r′,t)]=[φ(r,t),φ(r′,t)]=0”

    “因此其自由实标量场φ的拉氏密度函数为L=12ημνμφνφ12mcφ=12ctφ12(φ)12mc2φ.”

    一行行的公式被徐云写下。

    他对面的周绍平也没闲着,主动做起了自旋角动量算符及其对易关系与泡利矩阵的工作。

    “[si,sj]=iijksk”

    “令{s+=sx+isys=sxisy”

    “则得:[s+,s]=(sx+isy)(sxisy)(sxisy)(sx+isy)=i(sysxsxsy)+i(sysxsxsy)=2i[sy,sx]=2i(isz)=2sz”

    指尖与演算纸的接触声,在此时意外的有些动听,像是在演奏着特殊旋律的交响乐。

    在此前决定分开计算后。

    大卫·格罗斯、波利亚科夫、尼玛、希格斯、特胡夫特等人也都召开助理和帮手,组起了一个演算小组。

    每个小组最少由两人组成,多的有三个,希格斯的团队则有四人。

    每个团队的计算内容都是一致的,也就是多个小组共同进行计算,最后比对结果,以此避免因为错误影响推算。

    同时为了方便观众观看,几大直播平台也很贴心的给出了对应小组的直播视角。

    这种事儿在2023年很常见。

    比如游戏会有选手视角,体育比赛会有多机位等等

    在某讯平台的篮球比赛里,甚至还有饮水机视角,堪称杀人诛心。

    而在这几大视角中。

    作为代表着东道主登场的计算小组,周绍平和徐云受到的关注度也是最高的。

    目前周绍平这组的人气要远高于特胡夫特等人,甚至连威腾这个主人公都比不上,乃是当之无愧的热门视角。

    关注度高,反过来也促使了摄像师会重点关注周绍平和徐云二人。

    例如此时此刻。

    直播后台特意将徐云他们的画面,再次分成了精细的两组镜头。

    一组比较正常,囊括了徐云二人所坐区域的画面,也就是大家认知的标准正面影像。

    用具体例子来描述的话,就是有些类似新闻联播里主持人结束播音时整理演讲稿的画面。

    而另一组就比较特殊了一一它是长焦画面。

    镜头位于徐云和周绍平的头顶上方,画面拍摄的是徐云和周绍平的演算稿纸内容。

    也就是通过这个镜头,观众可以了解徐云的计算思路和进度。

    在徐云和周绍平计算着数据的同时。

    各大直播间内,也有大量的弹幕纷纷飘过,看起来好不热闹:

    【草,眼睛瞎了!】

    【谁能告诉我这嘛玩意儿.搞物理的都这么可怕吗?】

    【我感觉徐博士右手食指的指关节好像有一块茧诶,莫非是长期舞枪??棒留下的

    【有个问题,密度函数是不是算错了?为什么是tφ=c2π?】

    【前面的没错哦,这里要用到边界条件吧,徐博士把它简化了】

    【麦片搜索烧鱼馆五号分店】

    【Cpdd!】

    各种闲聊、吐槽以及学术交流的弹幕,充斥满了各大直播间。

    同时各大社交媒体上,也不断有各种动态飞快的刷过。

    这些动态超过百分之90%的内容,都是在吐槽看不懂计算过程,如同天书。

    还有少部分民科在表示物理学不存在,借机宣传自己推翻了相对论,希望有人能够出资打印作品。

    另外还有一些人和此前Liner实验室一样,带着一股好胜心在与徐云等人进行着‘竞赛’。

    比如一位昵称叫做东方喜乐、认证信息为‘国家理科基地高能物理研究组研究员’的博主,很快便发了一条动态:

    【(惊恐表情包)我勒个擦看了眼直播,按照现在的进度来看,周院士和徐博士这组的推导速度好像比格罗斯那组更快一点啊】

    也不知道是不是触发了某些关键词。

    这条微博很快便被顶上了广场首页,得到了大量曝光。

    短短两分钟不到。

    微博评论数便超过了100条。

    其中热度第一的评论昵称叫做【约定称王】,内容很简单:

    【真的假的?】。

    这条评论下方的回复只有两楼,能上第一主要是因为评论的早的缘故。

    不过热度第二的楼层就不一样了。

    二楼的评论账号同样也是个大V,认证标签是哈工大物理系在读研究生,昵称叫wink:

第四百五十一章 杨老:无所谓,我会出手[1/2页]

『加入书签,方便阅读』

上一页 目录 下一页